3.7.64 \(\int \frac {(a+b \tan (c+d x))^n (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [664]

Optimal. Leaf size=169 \[ -\frac {(A+i B) F_1\left (-\frac {1}{2};1,-n;\frac {1}{2};-i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^n \left (1+\frac {b \tan (c+d x)}{a}\right )^{-n}}{d \sqrt {\tan (c+d x)}}-\frac {(A-i B) F_1\left (-\frac {1}{2};1,-n;\frac {1}{2};i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^n \left (1+\frac {b \tan (c+d x)}{a}\right )^{-n}}{d \sqrt {\tan (c+d x)}} \]

[Out]

-(A+I*B)*AppellF1(-1/2,1,-n,1/2,-I*tan(d*x+c),-b*tan(d*x+c)/a)*(a+b*tan(d*x+c))^n/d/tan(d*x+c)^(1/2)/((1+b*tan
(d*x+c)/a)^n)-(A-I*B)*AppellF1(-1/2,1,-n,1/2,I*tan(d*x+c),-b*tan(d*x+c)/a)*(a+b*tan(d*x+c))^n/d/tan(d*x+c)^(1/
2)/((1+b*tan(d*x+c)/a)^n)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3684, 3683, 129, 525, 524} \begin {gather*} -\frac {(A+i B) (a+b \tan (c+d x))^n \left (\frac {b \tan (c+d x)}{a}+1\right )^{-n} F_1\left (-\frac {1}{2};1,-n;\frac {1}{2};-i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right )}{d \sqrt {\tan (c+d x)}}-\frac {(A-i B) (a+b \tan (c+d x))^n \left (\frac {b \tan (c+d x)}{a}+1\right )^{-n} F_1\left (-\frac {1}{2};1,-n;\frac {1}{2};i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right )}{d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[c + d*x])^n*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

-(((A + I*B)*AppellF1[-1/2, 1, -n, 1/2, (-I)*Tan[c + d*x], -((b*Tan[c + d*x])/a)]*(a + b*Tan[c + d*x])^n)/(d*S
qrt[Tan[c + d*x]]*(1 + (b*Tan[c + d*x])/a)^n)) - ((A - I*B)*AppellF1[-1/2, 1, -n, 1/2, I*Tan[c + d*x], -((b*Ta
n[c + d*x])/a)]*(a + b*Tan[c + d*x])^n)/(d*Sqrt[Tan[c + d*x]]*(1 + (b*Tan[c + d*x])/a)^n)

Rule 129

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + b*(x^k/e))^m*(c + d*(x^k/e))^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 3683

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e +
 f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&  !IntegerQ
[m] &&  !IntegerQ[n] &&  !IntegersQ[2*m, 2*n] && EqQ[A^2 + B^2, 0]

Rule 3684

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&  !Integ
erQ[m] &&  !IntegerQ[n] &&  !IntegersQ[2*m, 2*n] && NeQ[A^2 + B^2, 0]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (c+d x))^n (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {1}{2} (A-i B) \int \frac {(1+i \tan (c+d x)) (a+b \tan (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{2} (A+i B) \int \frac {(1-i \tan (c+d x)) (a+b \tan (c+d x))^n}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {(A-i B) \text {Subst}\left (\int \frac {(a+b x)^n}{(1-i x) x^{3/2}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac {(A+i B) \text {Subst}\left (\int \frac {(a+b x)^n}{(1+i x) x^{3/2}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=\frac {(A-i B) \text {Subst}\left (\int \frac {\left (a+b x^2\right )^n}{x^2 \left (1-i x^2\right )} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}+\frac {(A+i B) \text {Subst}\left (\int \frac {\left (a+b x^2\right )^n}{x^2 \left (1+i x^2\right )} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=\frac {\left ((A-i B) (a+b \tan (c+d x))^n \left (1+\frac {b \tan (c+d x)}{a}\right )^{-n}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {b x^2}{a}\right )^n}{x^2 \left (1-i x^2\right )} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}+\frac {\left ((A+i B) (a+b \tan (c+d x))^n \left (1+\frac {b \tan (c+d x)}{a}\right )^{-n}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {b x^2}{a}\right )^n}{x^2 \left (1+i x^2\right )} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {(A+i B) F_1\left (-\frac {1}{2};1,-n;\frac {1}{2};-i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^n \left (1+\frac {b \tan (c+d x)}{a}\right )^{-n}}{d \sqrt {\tan (c+d x)}}-\frac {(A-i B) F_1\left (-\frac {1}{2};1,-n;\frac {1}{2};i \tan (c+d x),-\frac {b \tan (c+d x)}{a}\right ) (a+b \tan (c+d x))^n \left (1+\frac {b \tan (c+d x)}{a}\right )^{-n}}{d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 1.64, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(a+b \tan (c+d x))^n (A+B \tan (c+d x))}{\tan ^{\frac {3}{2}}(c+d x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[((a + b*Tan[c + d*x])^n*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2),x]

[Out]

Integrate[((a + b*Tan[c + d*x])^n*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(3/2), x]

________________________________________________________________________________________

Maple [F]
time = 0.45, size = 0, normalized size = 0.00 \[\int \frac {\left (a +b \tan \left (d x +c \right )\right )^{n} \left (A +B \tan \left (d x +c \right )\right )}{\tan \left (d x +c \right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^n*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x)

[Out]

int((a+b*tan(d*x+c))^n*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^n*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^n*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)^n/tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right )^{n}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**n*(A+B*tan(d*x+c))/tan(d*x+c)**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**n/tan(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^n*(A+B*tan(d*x+c))/tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^n}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^n)/tan(c + d*x)^(3/2),x)

[Out]

int(((A + B*tan(c + d*x))*(a + b*tan(c + d*x))^n)/tan(c + d*x)^(3/2), x)

________________________________________________________________________________________